مروری بر آمیخته‌های پلی‌یورتان‌-آلژینات: تهیه، خواص و کاربردها

نوع مقاله : مروری

نویسندگان

1 اصفهان، دانشگاه اصفهان، دانشکده شیمی، گروه شیمی پلیمر، صندوق پستی ۷۳۴۴١-٨١۷۴٦

2 تهران، پژوهشگاه پلیمر و پتروشیمی ایران، پژوهشکده علوم، گروه پلی‌یورتان و پلیمرهای پیشرفته، صندوق پستی 112-14975

چکیده

استفاده از  پلیمرهای سنتزی با محدودیت‌هایی از قبیل قوانین سختگیرانه‌ زیست‌محیطی، محدودیت تأمین منابع مواد اولیه و هزینه‌ زیاد تولید مواجه است. بنابراین، پلیمرهای طبیعی مانند پلی‌ساکاریدها به‌ویژه نشاسته، سلولوز، همی‌سلولوز، کیتین، کیتوسان، آلژینات، گلوکومانان و آگار به‌دلیل  خواصی از جمله زیست‌سازگاری و زیست‌تخریب‌پذیری کاربردهای گسترده‌ای در مصارف صنعتی پیدا کرده‌اند. با وجود این، مشکل اصلی این پلیمرها خواص مکانیکی ضعیف و فرایندپذیری آن‌هاست که کاربرد آن‌ها را با محدودیت مواجه کرده‌است. آلژینات، پلیمر طبیعی پلی‌ساکاریدی آنیونی زیست‌تخریب‌پذیر، زیست‌سازگار، غیرسمی، آب‌دوست و ارزان‌قیمت است که به‌عنوان بخشی از اجزای ساختاری باکتری‌ها و جلبک‌های قهوه‌ای در طبیعت یافت می‌شود. آلژینات را می‌توان با برخی فرایندهای فیزیکی و شیمیایی به‌راحتی اصلاح و از آن مشتقات گوناگون ساخت. مواد مشتق‌شده از آلژینات ساختار، عملکرد و خواص متفاوتی دارند که استحکام مکانیکی، زیست‌سازگاری با یاخته‌های زنده و خاصیت ژل‌شدن را بهبود می‌بخشند. پلی‌یورتان‌ها به‌دلیل خواص فیزیکی و شیمیایی منحصربه‌فرد و تنظیم‌پذیر نظیر انعطاف‌پذیری، سختی، مقاومت به ضربه و رطوبت در صنایع گوناگونی مانند صنایع خودروسازی، الکترونیک، پوشاک، پزشکی و در پوشش‌ها کاربرد گسترده‌ای دارند. با توجه به خواص نام‌برده برای آلژینات و پلی‌یورتان‌ها، پژوهش‌های فراوانی درباره آمیختن این دو ماده در ساخت مواد با خواص ویژه و جدید  انجام شده است. در این مقاله، ابتدا مروری بر آلژینات و مشتقات آن‌ها به‌عنوان پلیمر طبیعی به‌همراه بررسی ساختار، خواص و کاربرد آن‌ها انجام شده است. همچنین افزون بر معرفی پلی‌یورتان‌ها، مقالات مربوط به آمیخته پلی‌یورتان و آلژینات به‌شکل‌های مختلف از جمله فیلم‌ها، غشاهای الاستومری، نانوکامپوزیت‌ها، هیدروژل‌ها، شبکه‌ها‌ی یونی ابرمولکولی، داربست‌های متخلخل و اسفنج‌ها در کاربردهای گوناگون نظیر سامانه‌های رهایش دارو، زخم‌پوش‌ها، مواد مقاوم در برابر آتش و جاذب‌ها بررسی شده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Polyurethane/Alginate Blends: A Review Account on Preparation, Properties and Applications

نویسندگان [English]

  • Sarvenaz Nasrollahi 1
  • Abbas Mohammadi 1
  • Hengameh Honarkar 2
1 Department of Organic Chemistry and Polymer, Fculty of Chemistry, University of Isfahan, Postal Code 81746-73441, Isfahan, Iran
2 Departement of Polyurethane and Advanced Polymers, Faculty of Science, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
چکیده [English]

The production and consumption of synthetic polymers have faced limitations such as strict environmental laws, limited supply of raw materials, and high production costs. Therefore, natural polymers, especially polysaccharides like starch, cellulose, hemicellulose, chitin, chitosan, alginate, glucomannan, and agar have found wide applications for various industrial uses due to their properties, such as biocompatibility and biodegradability. However, the main problem with these polymers is their weak mechanical properties and processability, which have limited their use. Alginate is a biodegradable, biocompatible, non-toxic, hydrophilic, and inexpensive biopolymer that is found as part of the structural components of bacteria and brown algae in nature. Alginate can be easily modified through some physical and chemical processes and its various derivatives. The new alginate derivatives have different structures, functions, and properties, including improved mechanical strength cell affinity, and gelation properties. Polyurethanes have a wide range of applications in various industries, such as automotive, electronics, textiles, medical devices coatings, and insulation, due to their unique physical and chemical properties that can be tuned, such as flexibility, hardness, impact resistance, and moisture resistance Considering the above features of alginate and polyurethanes, extensive research has been conducted on the combination of these two materials to create new materials with special properties and novel characteristics. This article is an introduction on alginate and its derivatives as a natural polymer; and while discussing their structure properties and applications, an such extended review is presented on polyurethane alginate mixtures in various forms as films, elastomeric membranes, nanocomposites hydrogels, supramolecular ionic networks, porous scaffolds, and foams in various applications such as drug delivery systems, wound dressings, fire-resistant materials and adsorbents.

کلیدواژه‌ها [English]

  • Polyurethane
  • Alginate
  • Syntesis
  • Properties
  • Application
  1. Remya V., Patil D., Abitha V., Rane A.V., and Mishra R.K., Biobased Materials for Polyurethane Dispersions, Int., 2, 158-167, 2016.
  2. Sionkowska A., Current Research on the Blends of Natural and Synthetic Polymers as New Biomaterials, Polym. Sci., 36, 1254-1276, 2011.
  3. Howard G.T., Biodegradation of Polyurethane: A Review, Biodeterior. Biodegrad., 49, 245-252, 2002.
  4. Kulkarni Vishakha S., Butte Kishor D., and Rathod Sudha S., Natural Polymers–A Comprehensive Review, J. Res. Pharm. Biomed. Sci., 3, 1597-1613, 2012.
  5. Alves T.F., Morsink M., Batain F., Chaud N.V., Almeida, Fernandes D.A., Silva C., Souto E.B., and Severino P., Applications of Natural, Semi-Synthetic, and Synthetic Polymers in Cosmetic Formulations, Cosmetics, 7, 75, 2020.
  6. Kucińska-Lipka J., Gubańska I., and Janik H., Polyurethanes Modified with Natural Polymers for Medical Application. Part 1. Polyuretane/Chitosan and Polyurethane/Collagen, Polimery, 58, 678-684, 2013.
  7. Ching S.H., Bansal N., and Bhandari B., Alginate Gel Particles–A Review of Production Techniques and Physical Properties, Rev. Food Sci. Nutr., 57, 1133-1152, 2017.
  8. Das A. and Mahanwar P., A Brief Discussion on Advances in Polyurethane Applications,  Indust. Eng. Polym. Res.3, 93-101, 2020.
  9. Misbah Bhatti I.A., Zia K.M., Bhatti H.N., and Shahid M., Synthesis, Biological Efficiency Evaluation and Application of Sodium Alginate-Based Polyurethane Dispersions Using Cycloaliphatic Isocyanate, as Antibacterial Textile Coating, Ind. Text., 50, 1625-1642, 2021.
  10. Mojerlou F., Lakouraj M.M., Barikani M., and Mohammadi A., Highly Efficient Polyurethane Membrane Based on Nanocomposite of Sulfonated Thiacalix[4]arene-Sodium Alginate for Desalination, Polym., 205, 353-361, 2019.
  11. Bhattacharyya A., Mukherjee D., Mishra R., and Kundu P.P., Development of pH Sensitive Polyurethane–Alginate Nanoparticles for Safe and Efficient Oral Insulin Delivery in Animal Models, RSC Adv., 6, 41835-41846, 2016.
  12. Paraskevopoulou P., Smirnova I., Athamneh T., Papastergiou M., Chriti D., Mali G., Cendak T., Chatzichristidi M., Raptopoulos G., and Gurikov P., Mechanically Strong Polyurea/Polyurethane-Cross-Linked Alginate Aerogels, ACS Appl. Polym. Mater., 2, 1974-1988, 2020.
  13. Sone H., Fugetsu B., and Tanaka S., Selective Elimination of Lead (II) Ions by Alginate/Polyurethane Composite Foams, Hazardous Mater., 162, 423-429, 2009.
  14. Daemi H., Barikani M., and Sardon H., Transition-Metal-Free Synthesis of Supramolecular Ionic Alginate-Based Polyurethanes, Polym., 157, 1949-1954, 2017.
  15. Chen Y., Long X., Lin W., Du B., Yin H., Lan W., Zhao D., Li Z., Li J., Luo F., and Tan H., Bioactive 3D Porous Cobalt-Doped Alginate/Waterborne Polyurethane Scaffolds with a Coral Reef-Like Rough Surface for Nerve Tissue Engineering Application, Mater. Chem. B, 9, 322-335, 2021.
  16. Khan S.U., Sultan M., Islam A., Sabir A., Hafeez S., Bibi I., Ahmed M.N., Khan S.M., Khan R.U., and Iqbal M., Sodium Alginate Blended Membrane with Polyurethane: Desalination Performance and Antimicrobial Activity Evaluation, J. Biol. Macromol., 182, 72-81, 2021.
  17. Guo L., Liang Z., Yang L., Du W., and Yu T., The Role of Natural Polymers in Bone Tissue Engineering, J. Control. Release, 338, 571-82, 2021.
  18. Ganesan P., Natural and Biopolymer Curative Films for Wound Dressing Medical Applications, Wound Medicine., 18, 33-40, 2017.
  19. Rodrigues S., Cordeiro C., Seijo B., Remuñán-López C., and Grenha A., Hybrid Nanosystems Based on Natural Polymers as Protein Carriers for Respiratory Delivery: Stability and Toxicological Evaluation, Polym., 123, 369-80, 2015.
  20. Balde A., Kim S-K., Benjakul S., and Nazeer RA., Pulmonary Drug Delivery Applications of Natural Polysaccharide Polymer Derived Nano/Micro-Carrier Systems: A Review, J. Biol. Macromol., 220, 1464-79, 2022.
  21. Ornaghi Jr. H.L., Monticeli F.M., and Agnol LD., A Review on Polymers for Biomedical Applications on Hard and Soft Tissues and Prosthetic Limbs, Polymers, 15, 4034, 2023.
  22. Lin X., Tsao C.T., Kyomoto M., and Zhang M., Injectable Natural Polymer Hydrogels for Treatment of Knee Osteoarthritis, Healthc. Mater., 11, 2101479, 2022.
  23. Gaggero G., Delucchi M., Allegretta G., Vicini S., and Botter R., Interaction of Sodium Alginate Thickener with Components of Architectural Water-Based Coatings, Org. Coat., 151, 106016, 2021.
  24. Berardi A., Bauhuber S., Sawafta O., and Warnke G., Alginates as Tablet Disintegrants: Understanding Disintegration Mechanisms and Defining ranges of Applications,  J. Pharm.601, 120512, 2021.
  25. Yang J.S., Jiang B., He W., and Xia Y.M., Hydrophobically Modified Alginate for Emulsion of Oil in Water,  Polym.87, 1503-1506, 2012.
  26. Aoyagi M. and Hiraguri T., Ultrasound Phantom Using Sodium Alginate as a Gelling Agent, J. Ultrasound Med., 36, 2345-53, 2017.
  27. Jeon O., Samorezov J.E., and Alsberg E., Single and Dual Crosslinked Oxidized Methacrylated Alginate/PEG Hydrogels for Bioadhesive Applications, Acta Biomater.10, 47-55, 2014.
  28. Charlet K., Natural Fibres as Composite Reinforcement Materials: Description and New Sources, Polym., 1, 37-62, 2012.
  29. Thomas S., Visakh P., and Mathew A., Advances in Natural Polymers, 18th ed., Springer, Germany, 18, 337-359, 2013.
  30. Shirwaikar A., Shirwaikar A., Prabu S.L., and Kumar G.A., Herbal Excipients in Novel Drug Delivery Systems, Indian J. Pharm. Sci., 70, 415-422, 2008.
  31. Sachan N.K., Pushkar S., Jha A., and Bhattcharya A., Sodium Alginate: The Wonder Polymer for Controlled Drug Delivery, Pharm. Res., 2, 1191-1199, 2009.
  32. Davis T.A., Llanes F., Volesky B., Diaz-Pulido G., McCook L., and Mucci A., 1H-NMR Study of Na-Alginates Extracted from Sargassum spp. in Relation to Metal Biosorption, Biochem. Biotechnol., 110, 75-90, 2003.
  33. Aarstad O.A., Tøndervik A., Sletta H.V., and Skjåk-Bræk G., Alginate Sequencing: An Analysis of Block Distribution in Alginates Using Specific Alginate Degrading Enzymes, Biomacromolecules, 13, 106-16, 2012.
  34. Liew C.V., Chan L.W., Ching A.L., and Heng P.W.S., Evaluation of Sodium Alginate as Drug Release Modifier in Matrix Tablets, J. Pharm., 309, 25-37, 2006.
  35. Tønnesen H.H. and Karlsen J., Alginate in Drug Delivery Systems, Drug Dev. Ind. Pharm., 28, 621-630, 2002.
  36. Daemi H., Barikani M., and Barmar M., Compatible Compositions Based on Aqueous Polyurethane Dispersions and Sodium Alginate, Polym., 92, 490-496, 2013.
  37. Daemi H., Barikani M., and Barmar M., A Simple Approach for Morphology Tailoring of Alginate Particles by Manipulation Ionic Nature of Polyurethanes, J. Biol. Macromol., 66, 212-220, 2014.
  38. Zia K.M., Zia F., Zuber M., Rehman S., and Ahmad M.N., Alginate Based Polyurethanes: A Review of Recent Advances and Perspective, J. Biol. Macromol., 79, 377-387, 2015.
  39. Oh S.T., Kim W.R., Kim S.H., Chung Y.C., and Park J.S., The Preparation of Polyurethane Foam Combined with pH-Sensitive Alginate/Bentonite Hydrogel for Wound Dressings, Fibers Polym., 12, 159-165, 2011.
  40. Daemi H., Mashayekhi M., and Modaress M.P., Facile Fabrication of Sulfated Alginate Electrospun Nanofibers, Polym., 198, 481-485, 2018.
  41. Fang D., Liu Y., Jiang S., Nie J., and Ma G., Effect of Intermolecular Interaction on Electrospinning of Sodium Alginate, Polym., 85, 276-279, 2011.
  42. Nie H., He A., Zheng J., Xu S., Li J., and Han C., Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate, Biomacromolecules, 9, 1362-1365, 2008.
  43. Huang Z.M., Zhang Y.Z., Kotaki M., and Ramakrishna S., A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites, Sci. Technol., 63, 2223-2253, 2003.
  44. Safi S., Morshed M., Hosseini Ravandi S., and Ghiaci M., Study of Electrospinning of Sodium Alginate, Blended Solutions of Sodium Alginate/Poly(vinyl alcohol) and Sodium Alginate/Poly(ethylene oxide), Appl. Polym. Sci., 104, 3245-3255, 2007.
  45. Mohammadi H. and Mirzaei-Qalee-Qobadi M., Removal of Chromium Ion from Aqueous Solutions by Sodium Alginate/Zeolite Polymer Hydrogel, 4th Int. Conf. Recent Innov. Chem. Chem. Eng., 2016.
  46. Darvishi-Cheshmeh-Soltani R., Godini H., Ghanadzadeh M.J., Rajaei M.S., and Safari M., Application of Stabilized Silica Nanopowder in Alginate for Cadmium Absorption from Aqueous Solutions, Water Wastwater (in Persian), 26, 2-10, 2014.
  47. Hosseini F., Rashidzadeh B., Rahman Panah A., and Razmian Gh., Using Alginate-Graphene Oxide Magnetic Beads to Remove Zn2+ Cations in Aqueous Solutions, 2nd Nat. Cong. Chem. Nanochem. Res. Technol., 2018.
  48. Hosseinzadeh H. and Ahmadi A., Synthesis of Nanocomposite Hydrogel Based on Sodium Alginate for Effective Removal of Methylene Blue from Aqueous Solutions and Antibacterial Applications, J. Polym. Sci. Technol., 31, 186-202, 2018.
  49. Tahmasebi K., Rezaei Kalantari R., Esrafili A., and Mazlomi S., Immobilization of Saccharomyces Cerevisiae Yeast on Alginate Substrate to Remove Ibuprofen from Aqueous Solutions, Health Eng., 7, 477-494, 2019.
  50. Rostami Z., Tabarsa M., and Rezaei M., Determining the Antioxidant Properties of Soluble Alginate Extracted from the Brown Alga Calpomenia Peregrina, 4th, Conf. New Idea. Ag. Envir. Tourism, 2015.
  51. de Oliveira Filho J.G., Rodrigues J.M., Valadares A.C.F., de Almeida A.B., de Lima T.M., Takeuchi K.P., and Egea M.B., Active Food Packaging: Alginate Films with Cottonseed Protein Hydrolysates, Food Hydrocoll., 92, 267-275, 2019.
  52. Senturk Parreidt T., Müller K., and Schmid M., Alginate-Based Edible Films and Coatings for Food Packaging Applications, Foods, 7, 170, 2018.
  53. Lee K.Y. and Mooney D.J., Alginate: Properties and Biomedical Applications, Polym. Sci., 37, 106-126, 2012.
  54. Bennacef C., Desobry-Banon S., Probst L., and Desobry S., Advances on Alginate Use for Spherification to Encapsulate Biomolecules, Food Hydrocoll., 118, 106782, 2021.
  55. Jain D. and Bar-Shalom D., Alginate Drug Delivery Systems: Application in Context of Pharmaceutical and Biomedical Research, Drug Dev. Ind. Pharm., 40, 1576-1584, 2014.
  56. Akindoyo J.O., Beg M., Ghazali S., Islam M.R., Jeyaratnam N., and Yuvaraj A.R., Polyurethane Types, Synthesis and Applications–A Review, Adv., 6, 114453-114482, 2016.
  57. Suleman S., Khan S.M., Gull N., Aleem W., Shafiq M., and Jamil T., A Comprehensive Short Review on Polyurethane Foam, J. Innov. Sci. Res., 12, 165-169, 2014.
  58. Somarathna H., Raman S., Mohotti D., Mutalib A., and Badri K., The Use of Polyurethane for Structural and Infrastructural Engineering Applications: A State-of-the-Art Review, Build. Mater., 190, 995-1014, 2018.
  59. Shokrolahi F., Yeganeh H., and Mirzadeh H., Simple and Versatile Method for the One-Pot Synthesis of Segmented Poly(urethane urea)s via in Situ-Formed AB-Type Macromonomers, Int., 60, 620-629, 2011.
  60. Meier-Westhues U., Polyurethane: Lacke, Kleb-und Dichtstoffe, Vincentz Network GmbH and Co KG, 2007.
  61. Petrović Z.S. and Ferguson J., Polyurethane Elastomers, Polym. Sci., 16, 695-836, 1991.
  62. Gwon J.G., Kim S.K., and Kim J.H., Development of Cell Morpholoies in Manufacturing Flexible Polyurethane Urea Foams as Sound Absorption Materials, Porous Mater., 23, 465-473, 2016.
  63. Silva A.L. and Bordado J.C., Recent Developments in Polyurethane Catalysis: Catalytic Mechanisms Review, Rev., 46, 31-51, 2004.
  64. Zia K.M., Bhatti H.N., and Bhatti I.A., Methods for Polyurethane and Polyurethane Composites, Recycling and Recovery: A Review, Funct. Polym., 67, 675-692, 2007.
  65. Hepburn C., Polyurethane Elastomers, Springer Science and Business Media, 2012.
  66. Meier-Westhues U., Polyurethanes: Coatings, Adhesives and Sealants, Vincentz Network GmbH, 2007.
  67. Panda S.S., Panda B.P., Nayak S.K., and Mohanty S., A Review on Waterborne Thermosetting Polyurethane Coatings Based on Castor Oil: Synthesis, Characterization, and Application, Plast. Technol. Eng., 57, 500-522, 2018.
  68. Mohammadi A., Barikani M., and Barmar M., Effect of Surface Modification of Fe3O4 Nanoparticles on Thermal and Mechanical Properties of Magnetic Polyurethane Elastomer Nanocomposites, Mater. Sci., 48, 7493-7502, 2013.
  69. Mohammadi A., Doctorsafaei A.H., and Zia K.M., Alginate/calix[4]arenes Modified Graphene Oxide Nanocomposite Beads: Preparation, Characterization, and Dye Adsorption Studies, J. Biol. Macromol., 120, 1353-1361, 2018.
  70. Mohammadi A., Barikani M., and Lakouraj M.M., Biocompatible Polyurethane/Thiacalix[4]arenes Functionalized Fe3O4 Magnetic Nanocomposites: Synthesis and Properties, Sci. Eng., C, 66, 106-118, 2016.
  71. Mohammadi A., Barikani M., and Barmar M., Effect of Polyol Structure on the Properties of the Resultant Magnetic Polyurethane Elastomer Nanocomposites, Adv. Technol., 24, 978-985, 2013.
  72. Defonseka C., Practical Guide to Flexible Polyurethane Foams, Smithers Rapra, 2013.
  73. Mohammadi A., Lakouraj M.M., and Barikani M., Waterborne Polyurethanes Based on Macrocyclic Thiacalix[4]arenes as Novel Emulsifiers: Synthesis, Characterization and Anti-Corrosion Properties, RSC Adv., 6, 87539-87554, 2016.
  74. Tabasum S., Noreen A., Maqsood M.F., Umar H., Akram N., Chatha S.A., and Zia K.M., A Review on Versatile Applications of Blends and Composites of Pullulan with Natural and Synthetic Polymers, J. Biol. Macromol., 120, 603-632, 2018.
  75. Honarkar H., Waterborne Polyurethanes: A Review, Dispers. Sci. Technol., 39, 507-516, 2018.
  76. Honarkar H., Barmar M., Barikani M., and Shokrollahi P., Synthesis and Characterization of Polyhedral Oligomeric Silsesquioxane-Based Waterborne Polyurethane Nanocomposites, J. Chem. Eng., 33, 319-329, 2016.
  77. Mohammadi A., Doctorsafaei A.H., Burujeny S.B., Rudbari H.A., Kordestani N., and Najafabadi S.A., Silver (I) Complex with a Schiff Base Ligand Extended Waterborne Polyurethane: A Developed Strategy to Obtain a Highly Stable Antibacterial Dispersion Impregnated with In Situ Formed Silver Nanoparticles, Eng. J., 381, 122776, 2020.
  78. Mohammadi A., Hosseini D., Isfahani A. P., Dehghani Z., and Shams E., Waterborne Polyurethane Nanocomposite Incorporated with Phytic Acid Intercalated Layered Double Hydroxides: A Highly Stable Aqueous Dispersion with Desired Corrosion Protection Capability, Adv. Technol., 32, 4014-4028, 2021.
  79. Honarkar H., Barmar M., and Barikani M., Synthesis, Characterization and Properties of Waterborne Polyurethanes Based on Two Different Ionic Centers, Fibers Polym., 16, 718-725, 2015.
  80. Ding Y., Sun Z., Shi R., Cui H., Liu Y., Mao H., Wang B., Zhu D., and Yan F., Integrated Endotoxin Adsorption and Antibacterial Properties of Cationic Polyurethane Foams for Wound Healing, ACS Appl. Mater. Interfaces, 11, 2860-2869, 2018.
  81. Bankoti K., Rameshbabu A.P., Datta S., Maity P.P., Goswami P., Datta P., Ghosh S.K., Mitra A., and Dhara S., Accelerated Healing of Full Thickness Dermal Wounds by Macroporous Waterborne Polyurethane-Chitosan Hydrogel Scaffolds, Sci. Eng., C, 81, 133-143, 2017.
  82. Liu N., Zhao Y., Kang M., Wang J., Wang X., Feng Y., Yin N., and Li Q., The Effects of the Molecular Weight and Structure of Polycarbonatediols on the Properties of Waterborne Polyurethanes, Org. Coat., 82, 46-56, 2015.
  83. Tripathi S., Mehrotra G., and Dutta P., Physicochemical and Bioactivity of Cross-Linked Chitosan–PVA Film for Food Packaging Applications, J. Biol. Macromol., 45, 372-376, 2009.
  84. Kim B., Aqueous Polyurethane Dispersions, Colloid Polym. Sci., 274, 599-611, 1996.
  85. Barni A. and Levi M., Aqueous Polyurethane Dispersions: A Comparative Study of Polymerization Processes, Appl. Polym. Sci., 88, 716-723, 2003.
  86. Wang X., Zhang Y., Liang H., Zhou X., Fang C., Zhang C., and Luo Y., Synthesis and Properties of Castor Oil-Based Waterborne Polyurethane/Sodium Alginate Composites with Tunable Properties, Polym., 208, 391-397, 2019.
  87. Varaprasad K., Jayaramudu T., Kanikireddy V., Toro C., and Sadiku ER., Alginate-Based Composite Materials for Wound Dressing Application: A Mini Review, Polym., 236, 116025, 2020.
  88. Hosseini Salekdeh S.S., Daemi H., Zare-Gachi M., Rajabi S., Bazgir F., Aghdami N., Nourbakhsh M.S., and Baharvand H., Assessment of the Efficacy of Tributylammonium Alginate Surface-Modified Polyurethane as an Antibacterial Elastomeric Wound Dressing for Both Noninfected and Infected Full-Thickness Wounds, ACS Appl. Mater. Interfaces, 12, 3393-3406, 2019.
  89. Colak S., Nelson C.F., Nüsslein K., and Tew G.N., Hydrophilic Modifications of an Amphiphilic Polynorbornene and the Effects on Its Hemolytic and Antibacterial Activity, Biomacromolecules, 10, 353-359, 2009.
  90. Xue Y., Xiao H., and Zhang Y., Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts, J. Mol. Sci., 16, 3626-3655, 2015.
  91. Claudio-Rizo J.A., Escobedo-Estrada N., Carrillo-Cortes S.L., Cabrera-Munguía D.A., Flores-Guía T.E., and Becerra-Rodriguez J.J., Highly Absorbent Hydrogels Comprised from Interpenetrated Networks of Alginate–Polyurethane for Biomedical Applications, Mater. Sci., Mater. Med., 32, 70, 2021.
  92. Wang S., Zhang Y., Yang L., Zhu Q., Ma Q., Wang R., Zhang C., and Zhang Z., Indoxacarb-Loaded Anionic Polyurethane Blend with Sodium Alginate Improves pH Sensitivity and Ecological Security for Potential Application in Agriculture, Polymers, 12, 1135, 2020.
  93. Lee D. W., Kim H.N., and Lee D.S., Introduction of Reversible Urethane Bonds Based on Vanillyl Alcohol for Efficient Self-Healing of Polyurethane Elastomers, Molecules, 24, 2201, 2019.
  94. Honarkar H. and Barikani M., Applications of Biopolymers I: Chitosan, Chem., 140, 1403-1420, 2009.
  95. Zia K.M., Anjum S., Zuber M., Mujahid M., and Jamil T., Synthesis and Molecular Characterization of Chitosan Based Polyurethane Elastomers Using Aromatic Diisocyanate, J. Biol. Macromol., 66, 26-32, 2014.
  96. Zafar K., Zia K.M., Alzhrani R.M., Almalki A.H., and Alshehri S., Biocompatibility and Hemolytic Activity Studies of Synthesized Alginate-Based Polyurethanes, Polymers, 14, 2091, 2022.
  97. Rizwan M., Zia K.M., Javaid M.A., Zuber M., Aftab W., and Rehman S., Synthesis and Molecular Characterization of Chitosan/Alginate Blends Based Polyurethanes Biocomposites, J. Biol. Macromol., 180, 324-331, 2021.
  98. Mostafavi A., Daemi H., Rajabi S., and Baharvand H., Highly Tough and Ultrafast Self-Healable Dual Physically Crosslinked Sulfated Alginate-Based Polyurethane Elastomers for Vascular Tissue Engineering, Polym., 257, 117632, 2021.
  99. Mohammadi A., Daemi H., and Barikani M., Fast Removal of Malachite Green Dye Using Novel Superparamagnetic Sodium Alginate-Coated Fe3O4 Nanoparticles,  J. Biol. Macromol.69, 447-455, 2014.
  100. Najafzadeh H., Kooshapur H., and Kianidehkordi F., Evaluation of an Oral Insulin Formulation in Normal and Diabetic Rats, Indian J. pharmacol., 44, 103, 2012.
  101. Bhattacharyya A., Nasim F., Mishra R., Bharti R.P., and Kundu P.P., Polyurethane-Incorporated Chitosan/Alginate Core–Shell Nanoparticles for Controlled Oral Insulin Delivery, Appl. Polym. Sci., 135, 46365, 2018.
  102. Bhattacharyya A., Mukherjee D., Mishra R., and Kundu P.P., Preparation of Polyurethane–Alginate/Chitosan Core Shell Nanoparticles for the Purpose of Oral Insulin Delivery, Polym. J., 92, 294-313, 2017.
  103. Díez-García I., de Costa Lemma M. R., Barud H. S., Eceiza A., and Tercjak A., Hydrogels Based on Waterborne Poly(urethane-urea) s by Physically Cross-Linking with Sodium Alginate and Calcium Chloride, Polym., 250, 116940, 2020.
  104. Torabi A., Sahraro M., Barikani M., and Daemi H., Green Synthesis of In Situ Forming Alginate-Urethane Hydrogel through Schiff Base Reaction, Lett., 254, 194-197, 2019.
  105. Li L., Ying X., Liu J., Li X., and Zhang W., Molecularly Imprinted Polyurethane Grafted Calcium Alginate Hydrogel with Specific Recognition for Proteins, Lett., 143, 248-251, 2015.
  106. Oh S.T., Kwon O.J., Chun B.C., Cho J.W., and Park J.S., The Effect of Bentonite Concentration on the Drug Delivery Efficacy of a pH-Sensitive Alginate/Bentonite Hydrogel, Fibers Polym., 10, 21-26, 2009.
  107. Oh S.T., Kim S.H., Jeong H.Y., Lee J.M., Cho J.W., and Park J.S., The Mechanical Properties of Polyurethane Foam Wound Dressing Hybridized with Alginate Hydrogel and Jute Fiber, Fibers Polym., 14, 173-181, 2013.
  108. Chen H.B., Shen P., Chen M.J., Zhao H.B., and Schiraldi D.A., Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating, ACS Appl. Mater. Interfaces, 8, 32557-32564, 2016.
  109. Nuthalapati K., Sheng Y.J., and Tsao H.K., Ag NPs-Coated Polyurethane Sponge as a Water Filter for Removal of Toxic Metal Ions at High Concentrations, Chemosphere, 343, 140266, 2023.
  110. Maurya K.L., Swain G., Sonwani R.K., Verma A., and Singh R.S., Biodegradation of Congo Red Dye Using Polyurethane Foam-Based Biocarrier Combined with Activated Carbon and Sodium Alginate: Batch and Continuous Study, Technol., 351, 126999, 2022.
  111. Feula A., Tang X., Giannakopoulos I., Chippindale A.M., Hamley I.W., Greco F., Buckley C.P., Siviour C.R., and Hayes W., An Adhesive Elastomeric Supramolecular Polyurethane Healable at Body Temperature, Sci., 7, 4291-4300, 2016.
  112. Daemi H. and Barikani M., Molecular Engineering of Manipulated Alginate-Based Polyurethanes, Polym., 112, 638-647, 2014.
  113. Wróblewska-Krepsztul J., Rydzkowski T., Michalska-Pożoga I., and Thakur V.K., Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning, Nanomaterials, 9, 404, 2019.
  114. Lu W.C., Chuang F.S., Venkatesan M., Cho C.J., Chen P.Y., Tzeng Y.R., Yu Y.Y., Rwei S.P., and Kuo C.C., Synthesis of Water Resistance and Moisture-Permeable Nanofiber Using Sodium Alginate–Functionalized Waterborne Polyurethane, Polymers, 12, 2882, 2020.